Anaerobic biotransformation of estrogens.
نویسندگان
چکیده
Estrogens are important environmental contaminants that disrupt endocrine systems and feminize male fish. We investigated the potential for anaerobic biodegradation of the estrogens 17-alpha-ethynylestradiol (EE2) and 17-beta-estradiol (E2) in order to understand their fate in aquatic and terrestrial environments. Cultures were established using lake water and sediment under methanogenic, sulfate-, iron-, and nitrate-reducing conditions. Anaerobic degradation of EE2 (added at 5 mg/L) was not observed in multiple trials over long incubation periods (over three years). E2 (added at 5 mg/L) was transformed to estrone (E1) under all four anaerobic conditions (99-176 microg L-1 day-1), but the extent of conversion was different for each electron acceptor. The oxidation of E2 to E1 was not inhibited by E1. Under some conditions, reversible inter-conversion of E2 and E1 was observed, and the final steady state concentration of E2 depended on the electron-accepting condition but was independent of the total amount of estrogens added. In addition, racemization occurred and E1 was also transformed to 17-alpha-estradiol under all but nitrate-reducing conditions. Although E2 could be readily transformed to E1 and in many cases 17-alpha-estradiol under anaerobic conditions, the complete degradation of estrogens under these conditions was minimal, suggesting that they would accumulate in anoxic environments.
منابع مشابه
Biochemical Mechanisms and Microorganisms Involved in Anaerobic Testosterone Metabolism in Estuarine Sediments
Current knowledge on the biochemical mechanisms underlying microbial steroid metabolism in anaerobic ecosystems is extremely limited. Sulfate, nitrate, and iron [Fe (III)] are common electron acceptors for anaerobes in estuarine sediments. Here, we investigated anaerobic testosterone metabolism in anaerobic sediments collected from the estuary of Tamsui River, Taiwan. The anaerobic sediment sam...
متن کاملAnaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway.
In the present study, anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria (SRB) was investigated and biotransformation pathways were proposed. SRB was enriched from anaerobic swine wastewater sludge and its abundance was determined by the fluorescence in situ hybridization (FISH) technique. Batch anaerobic biotransformation studies were conducted with fluorene ...
متن کاملMechanism of xanthine oxidase catalyzed biotransformation of HMX under anaerobic conditions.
Enzyme catalyzed biotransformation of the energetic chemical octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) is not known. The present study describes a xanthine oxidase (XO) catalyzed biotransformation of HMX to provide insight into the biodegradation pathway of this energetic chemical. The rates of biotransformation under aerobic and anaerobic conditions were 1.6+/-0.2 and 10.5+/-0.9 n...
متن کاملBiotransformation and bioconcentration of steroid estrogens by Chlorella vulgaris.
The biotransformation and bioconcentration of natural and synthetic steroid estrogens by Chlorella vulgaris were investigated by using batch-shaking experiments with incubation for 48 h in the light or dark. Estradiol and estrone were interconvertible in both light and dark conditions; however, this biotransformation showed a preference for estrone. In the light, 50% estradiol was further metab...
متن کاملIdentification of nitroso compounds from biotransformation of 2,4-dinitrotoluene.
The intermediates of microbial transformation of 2,4-dinitrotoluene by a mixed bacterial culture derived from activated sludge were identified as 2-amino-4-nitrotoluene, 4-amino-2-nitrotoluene, 2-nitroso-4-nitrotoluene, and 4-nitroso-2-nitrotoluene. The biotransformation of 2,4-dinitrotoluene occurred only under anaerobic conditions with an exogenous carbon source. The two nitroso compounds wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Science of the total environment
دوره 367 2-3 شماره
صفحات -
تاریخ انتشار 2006